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Because of experimental interest in the effects of particle interactions in Bose con- 
densates, such as a dilute atomic vapour of "Rb, we have worked out the momentum 
distribution in an N-Boson many-body assembly a t  T=O, for which both confinement 
and interbosonic interactions are modelled as purely harmonic. The half-width of 
the Gaussian momentum distribution is displayed as a function of N and of the strength 
and sign of the harmonic interactions. The bosonic kinetic energy is finally treated. 

Keywork N-Boson fluid; Momentum density 

Condensation in confined bosonic vapours consisting of alkali atoms 
[l -41 is the motivation for renewed theoretical studies of many- 
body effects in interacting assemblies of confined Bosons. Thus, the re- 
cent investigation of Amoruso et al. [5 ]  has resulted in a comparison 
between collective excitations of a Fermion vapour and those in a 
dilute Bose-condensed cloud at zero temperature, in the latter case 
assuming contact interactions. 
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Our interest in the present Letter is related, but different, in that we 
focus on the momentum distribution for another interacting N-Boson 
model in its ground state. The model considered below has been 
studied earlier in a different context by various authors [6-81. What 
is important for present purposes is that the reduced density matrices 
can be established analytically for this model of N Bosons with har- 
monic confinement, along with Boson - Boson interactions which 
are also harmonic. Specifically then, the model Hamiltonian H is 
given by 

the choice of sign allowing either attractive or repulsive interactions 
between the Bosons. 

We shall, because of the studies in Refs. [6-81, merely quote the 
result for the first-order density matrix p1 (see, for example, Eq. (2.34) 
of Ref. [8]) as 

where dN is defined by 

In Eq. (2) ,  a1 and a2 have the explicit forms 

(4 )  
1 ( N  - 1)(d + 4) + 2(N2 - N + 1 ) w ~ N  

a1 =- 
4N ( N  - 1)W -I- WN 

and 

2 

( 5 )  
1 ( N  - I ) ( W  - W N )  

2N ( N - I ) w + w N  
a2 = - 

We assume that for repulsive interactions the coupling is not so strong 
as to break confinement. 
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We next note that the ground-state density profile n(r) = pl(r, r) 
enters the first-order density matrix p1 in Eq. (2) through 

pI (r, r’> = exp { - 1 [u + (N - 1)w] ( - 2 r ) ) 2 } n (  q). (6) 

To see how Eq. (6) arises from Eq. (2), we note first, as is readily 
verified from Eqs. (4) and (9, that 

(7) 
1 1 NUN a1 - -a2 = - 
2 2 ( N -  l)W+wN’ 

Using sum and difference coordinates R = (r + r ’)/2 and (r - r ’)/2 re- 
spectively in Eq. (2), it follows after some manipulation in which the 
identity (7) is utilized that p1 in Eq. (2) has the equivalent form (6). 

One can now obtain the zero-temperature Wigner distribution 
function, fw(R, p), by taking the Fourier transform with respect to 
(r - r’)/2 in Eq. (6). Then the ‘mixed’ density matrix fw is found to 
take the form 

fw(R, P) = A2 exp(-w2>.(R> (8) 

where crN is essentially the inverse of the constant multiplying (r - r’)2 
in Eq. (6). The momentum distribution, P(p) say, is readily obtained 
by integration over R as 

P ( p )  = fw(R, p)dR = NA2 eXp(-aNp2) (9) s 
where Jn(R)dR = N has been used, while A’ in Eqs. (8) and (9) is a 
remaining normalization factor. The result for P(p) is thus proved 
to be of Gaussian shape, as for the non-interacting, harmonically 
confined Bosons, but with a half-width that depends not only on N 
and the force constant of confinement (proportional to w2) but also 
on the strength (and of course the sign) of the Boson - Boson inter- 
actions through dN defined in Eq. (3). 

In summary, in the N-Boson model already studied in r space in 
Refs. [6-81, the Wigner function factorizes into the form (8) and 
since the R dependence enters only through the density profile n(R), 
the momentum distribution follows using only the normalization of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
5
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



186 N. H. MARCH AND M. P. TOSI 

the density profile n(R) to the number of Bosons N. The momen- 
tum distribution remains Gaussian, as for harmonic confinement with 
y2=O: but the half width is altered by the sign and strength of the 
harmonic interbosonic interactions characterizing the model. 

The final point we wish to stress concerns the quantum-mechanical 
average of the kinetic energy operator in Eq. (1). Clearly this can be 
immediately related to ( p2P(p)/2), the kinetic energy per Boson, 
T,/N say, to yield 

Switching off the interactions by letting -, 0, one finds the expected 
'confinement' result To/N= 3 4 4  as follows from the virial theorem 
with total energy per particle as the zero-point value 3w/2. Evidently, 
the kinetic energy change per Boson due to the interactions is given by 

In addition to these results following readily from the momentum 
density formulation, it is of interest to note an alternative route to the 
kinetic energy. This r space treatment is now in terms of the particle 
density n(r), the expectation value of the total kinetic energy operator 
in Eq. (1) being 

where C is the known constant: 

3 (N - 1)(J + 4) + 2(N2 - N + I)WN C=- 
4N (N - 1 ) ~  + WN 
-- N W W N / ~  lii2}. (13) 

While Eqs. (12) and (13) must obviously be equivalent to ( p 2 P ( p ) / 2 )  
evaluated from the Gaussian momentum density (9) when the explicit 

(N - l ) w  + wN 
 NU^ In{" 

2 ( N - l ) w + w ~  
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form of n(r) is inserted into Eq. (12) from Eq. (2), the result (12), go- 
ing back at least as far as Cohen and Lee [8], is of basic interest for 
the density functional theory (DFT) of interacting Bosons in the 
ground state. While the constant C in Eq. (12) involves again simply 
the normalization integral for the density profile n(r), we wish finally 
to emphasize, as a possible future direction for research in this cur- 
rently important area of interacting Bosons, that the contribution 
involving Jn(r)lnn(r)dr is of the form of the so-called Shannon 
information entropy, which has been discussed elsewhere in relation 
to DFT [9]. 
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